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The researcher observed a group of undergraduate students and faculty mentors collaborating in 
the development of a model for a student chosen topic in epidemiology. Results suggest that both 
students and mentors struggled with key understandings necessary to develop the model. 
Students struggled with conceiving of their compartment model as relating quantities, and 
mentors struggled with tracking and attending to the biological constraints of the problem the 
students chose. 
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Choosing quantities and their relationships is a critical part of successfully approaching a  
mathematical model. Equations and graphs in word problem and modeling contexts represent 
relationships between quantities and their rates of change. However, the notion of quantity 
receives little focus in the teaching school mathematics (Smith & Thompson, 2007; Thompson, 
2008, 2011). Thompson describes quantification as the process of conceptualizing of an attribute 
of an object as having a measure. Understanding how students and mathematicians imagine and 
interpret quantities is critical to understanding the process of model development. 

Research in mathematical modeling and quantification typically focuses on students working 
pre-chosen tasks (Bliss et. al., 2006; Gravemijer, 1994; Goldin, 1997; Lesh & Doerr, 2003; 
Thompson, 2011; Steffe and Thompson 2000). Sometimes these tasks are quite open, and 
students go through cycles of model development; however, in assigning a task to students, there 
are constraints placed on students as part of intentionally guiding the students' conceptual 
development (ibid). It has been argued in the past that these constraints limit students' 
experiences in developing their own research questions (Castillo-Garsow, 2014; Castillo-Garsow 
& Castillo-Chavez, 2015). Furthermore, pre-chosen tasks place teachers or teacher-researchers in 
a dominant role where the teacher has an opportunity to learn and know everything there is to 
know about the problem. So these pre-chosen tasks rarely highlight difficulties in modeling or 
mentoring modeling that a teacher would experience. 

For example, Camacho et al. (2003) found that choosing one's own project and research 
question creates situations in which students take the lead in researching topics far outside a 
mentors' area of expertise, essentially reducing the mentor to a role of consultant rather than 
leader. Mentors provide mathematical expertise, guiding students by suggesting appropriate tools 
and techniques. However, students take the lead in these projects, providing the background that 
defines the problem from subject area research and personal experience (Castillo-Garsow & 
Castillo-Chavez, 2015). These role reversals in which students are the experts are important 
sources of motivation and self-efficacy. Choosing a topic that mentors know less about allow 
students to participate and contribute in ways other than mathematical performance (Rubel, 
2017), which is an area in which students cannot compete with mentors (Camacho et. al 2003; 
Castillo-Garsow & Castillo-Chavez, 2015). 

This perspective creates a dichotomy of two ways in which difficulties with quantification 
can occur: understanding the background context but having difficulty mathematizing, or having 
an expert understanding of the mathematical tools for modeling, but having difficulty 



understanding and connecting those tools to the background context due to inexperience with the 
context itself. Quantification research typically focuses on the former, but rarely focuses on the 
latter. This study focuses on both. As students and mentors interacted with each other, this paper 
identifies challenges that arose in quantification for both students and mentors as they 
collaborated to construct a model in a student-led project. 

Methods 
This study occurred in the fifth week of an eight-week summer REU in mathematical 

biology. Prior to this study, the students had taken a three-and-a-half-week course consisting of 
lecture, computer lab work, and textbook exercises in dynamical systems. Following this course 
work, students self-recruited into groups of three to five, and chose a topic of interest. During the 
fifth week, students made daily presentations on their topic to a panel of faculty and graduate 
mentors who provided feedback. In the final three weeks of the program, students completed the 
analysis of their model and wrote a technical report on their project. Four groups of students 
chose to participate in the study, and this a case study from one of those groups. Analysis of the 
other groups can be found elsewhere (Castillo-Garsow, 2021, 2022). 

The group of students in this study was formed of five undergraduate students who chose to 
construct a model for controlling a disease that can be treated but not cured. The students 
working on this project eventually developed their work into a published journal article, the 
citation for which is omitted for privacy. The students made six presentations over six days to a 
panel of faculty and graduate mentors who provided feedback to the students. Each proposal 
presentation was video and audio recorded, and the audio recordings were transcribed. 
Transcripts were open coded (Corbin & Strauss, 2014), and from that coding, themes emerged 
that identified and explained the primary areas of conflict between mentors and students. The 
results here are a case study of those transcripts, focusing on creating a narrative of those 
conflicts (Flyvbjerg, 2006). The purpose of this case study is to identify challenges than mentors 
and students may encounter while collaborating on a student-led applied mathematics project, 
both to inform mentors and to inspire future research. 

Results 
The groups’ research question was focusing on the cost effectiveness of treating individuals 

with mild symptoms of a disease, compared to the current practice of only treating patients in the 
severe symptom stage. These mild symptoms occurred in many different diseases, meaning that 
treating individuals with mild symptoms would result in treating many individuals who did not 
have the disease of interest with medication for the wrong disease. The students proposed 
studying this question with a system of ordinary differential equations (ODE model). 

Student Challenge: Quantity vs. Category 
In the students’ first attempt at constructing a disease model (Figure 1), the students 

classified individuals only by their symptoms.  The category I1 therefore contained both 
individuals who had the disease of study, and individuals who had the same symptoms of a 
difference disease. Students imagined that individuals who did not have the disease of study 
would return to S, while individuals who did have the disease of study would progress to I2 or L. 
Describing this model, a student said: “After presenting mild symptoms, those mild symptoms 
go away, then they go back to the susceptible class. Only those who have [the disease] proceed 
to a progression to the severe symptoms, which are only for [the disease]." 



 

Figure 1: A simplified flow diagram of the disease group’s first model. Box S represents susceptibles, I1 represents 
individuals with mild disease symptoms from several diseases.. I2 represents individuals with severe symptoms 

unique to the disease of study. L represents asymptomatic individuals. 

However, in an ODE model, these variables only track a number of individuals. I1 would 
necessarily be a numerical quantity of a number of individuals with mild symptoms, meaning 
that information about who does or does not really have the disease of study could not be stored 
in this information structure. Students may have made this mistake because they were imagining 
tracking individuals moving through the categories S, I1, I2, and L; rather than imagining S, I1, I2, 
and L as simple numbers of people. In other words, the students were not conceiving of S, I1, I2, 
and L as the values of quantities that could be measured (Thompson, 2011). 

 

Figure 2. Students’ second model, showing an F compartment for individuals falsely diagnosed with the disease of 
study. The students’ fourth and fifth models also had a similar compartment forming a closed loop with S.  

Mentors provided feedback on this model informing them that they needed a separate 
compartment for individuals who did not have the disease “I think you're going to need a 
separate class for those people” (day 3) and “There's no way to do this without a separate 
compartment” (day 3). But at this time, mentors did not explain that tracking individuals was not 
possible in an ODE, or that S, I1, I2, and L were numbers. Students responded by creating a 
compartment F for individuals falsely diagnosed with the disease of study (Figure 2), but this 
was changed again in the third version (Figure 3). 

In the students’ third version of the model (Figure 3), they repeated their categorization 
mistake with a new compartment. Here students imagined that all individuals exhibiting 
symptoms would receive the same treatment, so all treated individuals were placed in a single 



compartment. Again, the students imagined that from this compartment, individuals who did not 
have the disease of study would return to S, and individuals who did have the disease would 
advance to L, and that the model would somehow keep track of which individuals were which. 
This resulted in a model with a path from susceptible to asymptomatically infected passing only 
through treatment – implying that it was possible for treatment itself to cause infection. This 
time, mentors addressed problems with tracking individuals. As one mentor put it: 

 
You can't do that because if a person who doesn't have the illness and a person who does 
have the illness, and they go to the same thing. What you're doing after that is you're 
saying, both people who don't have it and do have it can now become [asymptomatic].  
(Mentor, day 5) 

 

Figure 3. A simplified flow diagram of the disease group’s third model, with an added T compartment for treated 
individuals. Dashed lines represent individuals moving into treatment. Dotted lines represent individuals moving out 

of treatment. 

 
Another perspective here is that students may have been adopting the point of view of a 

physician-observer, rather than the point of view of the disease itself. Students wanted to lump 
all the mild symptoms into a single category because all mild symptoms look alike. Similarly, 
they wanted to lump all treated individuals together because they all were receiving the same 
treatment. However, from the point of view of the disease, individuals in these categories had 
very different diseases, and therefore needed to be tracked separately. In either case, I1 and T did 
not represent numerical quantities. 

Mentoring Challenge: Dynamics over the research question.  
Because students were tracking the cost-effectiveness of treatments that had a risk of being 

wasted on individuals with another disease, the students needed a way to track the number of 
falsely diagnosed individuals. These falsely diagnosed individuals would add to the cost without 
controlling the disease. The students included a compartment, F, for this in their second, fourth, 
and fifth models (Figure 2).  



This F compartment was isolated from the rest of the model in that the variable F did not 
appear in equations for I1, I2, or L. Because this compartment did not affect disease dynamics, 
mentors objected to its inclusion as unnecessary, and frequently forgot that the compartment was 
needed to answer the research question of cost. Examples include: “If you only consider 
dynamics, F compartment does nothing” (day 3) and “You asked the question how to treat early 
treatment for [the disease]. That part [F] has nothing to do with [the disease]. Why do you have 
to include this here?” (day 6). 

Mentoring Challenge: Testing vs. diagnosis 
 In the disease model, a key component of the cost was the risk of treating other diseases. 

This risk was increased because no available test that could distinguish mild symptoms of this 
disease from mild symptoms of other diseases. The tests that did exist could only be used during 
severe symptoms, when testing was unnecessary because the symptoms were characteristic. The 
students frequently stated that there was no test, or that testing was only possible in the I2 severe 
stage. However, mentors frequently assumed that there was testing or screening occurring in I1. 
See the following excerpt from day 3: 

 
Student: The current test that we have now, there is no way to test if you have [the] disease. 

There's absolutely no way. The only way you test it if you go here [I2] and you have a 
lesion here to take samples 

Mentor: The cost of this testing, and the patient, the I1. The same test? 
Student: There's no testing for I1 in that. 
 
Confusion about testing continued through day 5, where mentors continued to ask questions 

and suggest changes to the model that involved “testing” or “screening” individuals in I1. For 
example, on day 5, suggesting changes to the third model (Figure 3) by incorporating screening: 
“So then you screen that [S] and once you screen that you put it here [I1], [you] do not go here 
[T].” At least some of the confusion arose from students frequently referring to falsely diagnosed 
individuals as a “false positive,” suggesting the presence of a test. 

Discussion 
Previous research from the project showed that mentoring had the most impact on students’ 

decisions when the mentors focused on asking questions about the biological background, and 
making suggestions about the mathematics (Castillo-Garsow, 2021). That result is consistent 
with perspectives found in literature on these student-led projects, which describe students as 
having topic context expertise, while mentors have mathematical expertise (Camacho et al, 2013; 
Castillo-Garsow & Castillo-Chavez, 2015). Effective mentoring of a student-led project involves 
respecting the respective expertise of both students and mentors. This project shows an alternate 
perspective on the same phenomenon. Here, the challenges in model development arose from 
students struggling to adopt a mathematical perspective on the problem, while mentors struggled 
to understand the biological context.  

The students in this project had a strong understanding of the biology, but had difficulty 
communicating that understanding to the mentors. The mentors had difficulty with setting aside 
their preconceived ideas of what the biology of this disease would be and imagined that testing 
and treatment occurred in ways that they were more familiar with. Mentors also struggled to 
attend to contextual concerns – such as cost – over mathematical concerns, such as the dynamical 
behavior of the model itself. 



The students also struggled with quantification. They imagined the modeling process as the 
story of individuals moving through categories, and/or the perspectives of observers of those 
individuals.  However, writing a mathematical model requires imagining not just individuals, but 
also numbers of individuals. The students’ repeated difficulties in making the transition from 
category to quantity resulted in errors in the base structure of the model and the corresponding 
mathematical equations. Mentors initially responded by only correcting the surface level 
mistake. It was only after the mistake was repeated in a new way that mentors addressed the 
foundations of ODE model construction with students, specifically the principle that individuals 
did not have histories that could be tracked through compartments. Here the necessary mentoring 
expertise was in mathematics in understanding the assumptions and limitations of an ODE 
model, but also in pedagogical content knowledge by forming a model of the students’ 
interpretation of the model and addressing individual tracking.   

Conclusion 
The results here add to the literature on student-led projects in mathematical biology 

modeling. The results of this paper suggest that the reversal of roles described in previous 
literature (Camacho et al. 2013; Castillo-Garsow & Castillo-Chavez, 2015) is not only sufficient 
for a successful project (Castillo-Garsow, 2021), but also necessary. In this example, difficulties 
in model construction came from participants operating outside of their areas of expertise. 
Students struggled with mathematical concepts, and mentors struggled with biological concepts. 
However, this struggle outside of ones area of expertise should not be avoided. Rather it was 
mutual teaching between students and mentors that enabled the participants to collaborate and 
develop a successful model that was eventually published. 

The results of this research also suggest that more research is needed in the ways that 
mathematicians come to understand or struggle to understand scientific concepts as part of 
mathematical quantification. Quantification research cannot only address the mathematization of 
well understood scientific contexts, but must also explore how a developing understanding of the 
context influences the conceptualization of quantities and the development of quantitative 
relationships. In particular, further study of mathematics experts developing models of 
unfamiliar scientific problems would greatly add to our understanding of quantification. 
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